Mechanisms responsible for the synergistic antileukemic interactions between ATR inhibition and cytarabine in acute myeloid leukemia cells
نویسندگان
چکیده
Acute myeloid leukemia (AML) continues to be a challenging disease to treat, thus new treatment strategies are needed. In this study, we investigated the antileukemic effects of ATR inhibition alone or combined with cytarabine in AML cells. Treatment with the ATR-selective inhibitor AZ20 caused proliferation inhibition in AML cell lines and primary patient samples. It partially abolished the G2 cell cycle checkpoint and caused DNA replication stress and damage, accompanied by CDK1-independent apoptosis and downregulation of RRM1 and RRM2. AZ20 synergistically enhanced cytarabine-induced proliferation inhibition and apoptosis, abolished cytarabine-induced S and G2/M cell cycle arrest, and cooperated with cytarabine in inducing DNA replication stress and damage in AML cell lines. These key findings were confirmed with another ATR-selective inhibitor AZD6738. Therefore, the cooperative induction of DNA replication stress and damage by ATR inhibition and cytarabine, and the ability of ATR inhibition to abrogate the G2 cell cycle checkpoint both contributed to the synergistic induction of apoptosis and proliferation inhibition in AML cell lines. Synergistic antileukemic interactions between AZ20 and cytarabine were confirmed in primary AML patient samples. Our findings provide insight into the mechanism of action underlying the synergistic antileukemic activity of ATR inhibition in combination with cytarabine in AML.
منابع مشابه
Mechanisms of synergistic antileukemic interactions between valproic acid and cytarabine in pediatric acute myeloid leukemia.
PURPOSE To determine the possibility of synergistic antileukemic activity and the underlying molecular mechanisms associated with cytarabine combined with valproic acid (VPA; a histone deacetylase inhibitor and a Food and Drug Administration-licensed drug for treating both children and adults with epilepsy) in pediatric acute myeloid leukemia (AML). EXPERIMENTAL DESIGN The type and extent of ...
متن کاملThe novel tyrosine kinase inhibitor AKN-028 has significant antileukemic activity in cell lines and primary cultures of acute myeloid leukemia
Aberrantly expressed tyrosine kinases have emerged as promising targets for drug development in acute myeloid leukemia (AML). We report that AKN-028, a novel tyrosine kinase inhibitor (TKI), is a potent FMS-like receptor tyrosine kinase 3 (FLT3) inhibitor (IC(50)=6 nM), causing dose-dependent inhibition of FLT3 autophosphorylation. Inhibition of KIT autophosphorylation was shown in a human mega...
متن کاملCDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide
The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteinsin natural defense against malignant transformation not only represents a heroic perspective forthese proteins, but also provides a bright future for the application of small molecule inhibitorsof CDKs in the novel cancer treatment strategies. The results of the present study revea...
متن کاملCDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide
The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteinsin natural defense against malignant transformation not only represents a heroic perspective forthese proteins, but also provides a bright future for the application of small molecule inhibitorsof CDKs in the novel cancer treatment strategies. The results of the present study revea...
متن کاملTowards repositioning of quinacrine for treatment of acute myeloid leukemia - Promising synergies and in vivo effects.
We previously reported that the anti-malarial drug quinacrine has potential to be repositioned for treatment of acute myeloid leukemia (AML). As a next step towards clinical use, we assessed the efficacy of quinacrine in an AML-PS mouse model and investigated possible synergistic effects when combining quinacrine with nine other antileukemic compounds in two AML cell lines. Furthermore, we expl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017